
B3E

Joe Dvorak

Vania Pradipta

Cheau Lin Chai

Developing innovative solutions to protect the world we live on

 1

Table of Contents

 Page Number

1. Problem Statement 2

2. Statement of Work 2

3. Patent Information 5

4. Engineering Specifications 5

5. Generation of Design Concepts 8

6. Feasibility Evaluation of Possible Designs 10

7. Determination of Suitable Designs in the Fall Semester 15

8. Determination of the Final Design 15

9. Design of the Viper and Controller System 16

10. Implementation of Arc-View Design 20

11. Results 21

12. Budgets 22

13. Conclusion 22

14. Appendix A 24

15. Appendix B 26

16. Appendix C 29

17. Appendix D 39

 2

Problem Statement

Our problem statement is to design a system that prevents liquid waste disposal in

unauthorized sites and to prove the waste was disposed in authorized sites.

Statement of Work

This project involves developing a system to help oil well disposal contractors

properly deal with oil well waste products. This project must be part of an effort to solve

a system-wide problem. The full solution to the issue must assist contractors from when

they first are informed of the well site location to logging of the final disposal site. Many

steps are involved in this task. The system developed will involve many different people

and must be understandable by every one of these people. In the end, a system must be

designed that prevents liquid waste disposal in unauthorized sites and to prove the waste

was disposed in allowable sites.

 Figure 1-Oil Drilling Rig

The proposed system begins when the drilling contractor hires the disposal

contractor to remove the drilling fluid waste and informs him of the location of the

proposed well. The disposal contractor types the well location into the computer program

 3

created by the project, which is installed at home office. The program will then show the

disposal contractor eligible locations for a disposal site. To determine these eligible

locations for disposal, the program must consider topographical, soil type, land

ownership, and watershed information. The allowed combinations of soil type and

typographical areas will change depending on the location within the state, and the

program must know all of these permitted types in each area. The contractor selects a

site and contacts the owner of the land for preliminary approval. Once this approval has

been granted, the permitter for the disposal company writes up a permit for this location

and sends this to the Oklahoma Corporation Commission. After having the permit

certified, the people in the home office send this information out to the supervisor in the

field.

Figure 2-Disposal Truck

 The supervisor in the field then takes over the process. When a truck is ready to

deploy, the supervisor will call the home office and relay the well site location and truck

ID to the home office. They then send disposal area information over the Qualcomm

 4

network to the truck. The driver then identifies himself to the software in the truck. This

creates a log entry in the data log in the truck. The equipment on the truck tells the driver

when to go to get to the disposal site. The driver follows the driving instructions to the

site. When he gets there, he hits a button to open the valve on the truck. The program on

the truck uses data from a GPS receiver to check to make sure that the truck is within the

designated disposal area. If the truck is within the allowed area, the valve opens and the

driver is allowed to spread the drilling waste. The program on the truck logs the position

and time when the valve was opened and continues to log both position and time until the

driver closes the valve. The driver is allowed to open the valve again if he is still in the

designated area; otherwise the valve will still remain closed. Also, whenever the valve is

open, the truck is required to be in motion or the program will close the valve again.

When the driver has finished disposing of the drilling fluids, he hits a “job done” button.

This closes the log and sends the information back to the home office. The valve will

also lock at this point and can not be opened until the truck returns to the supervisor. The

truck is then ready to be refilled and restart the process.

 The data logs from the trucks are stored at the home office. A program at the

home office allows the people there to easily pull up a map showing all the disposal

information. This information can be filtered by date and location to enable anyone to

easily understand exactly where the fluids were applied. This system must present the

information in an easy to use manner since it could be used by untrained personnel to

prove proper disposal in courts. This step concludes the process that we are proposing.

 Several considerations must be taken into account at the system level. The system

needs to be tamperproof, so that the information it gathers can be trusted. It must be easy

 5

to use, especially where it interfaces with the driver since this person is most likely

untrained. The design must not break down often, since the contractor will be relying on

it to handle the entire process of his business. All parts of the system must be accurate

and properly communicate with each other. This project has many aspects that must be

solved, but offers a great benefit to society when it is implemented.

Patent Information

 B3E has researched patents on a wide variety of topics, given the large scope of

this project. When researching patents for waste disposal valve, we found a patent in

waste disposal monitoring system, United States Patent # 4,549,570. The system

involves a valve that monitors the flow of fluid waste to a reservoir. It also includes

density circuitry, level detector circuitry, counter, and counter delay circuitry. All of

these are placed in the reservoir and not in the truck. Therefore, B3E does not foresee

any complications with our project.

 When researching patents related to finding direction to the disposal sites, we

found patent # 6,784,832. This patent is for an in-vehicle information system. It covers

giving direction based on GPS data and determining route for the vehicle. Therefore,

B3E would most likely need to purchase a direction system.

Engineering Specifications

 B3E will only plan on designing the parts in the truck. We probably do not have

the time to create a GIS software package. B3E will make sure that the truck will

communicate with the GIS software.

 6

 B3E has created a list of requirements for the controller based on our

understanding of the problem with which we are faced. The following are the

requirements that we have for the controller:

• Has a method for electronic identification of the driver

• Receives area data and well site data in an electronic form (Qualcomm?)

o Area data is a polygon created by GPS lat/long points in a text format-Use

NMEA 0183 for GPS format

o Well site data will be a single GPS location

• Optional: Receives driver directions in an electronic form

o Directions will be text in English only

• Box informs driver when vehicle is within the designated area

• Receives input from a switch to open valve

• Tests to determine whether valve is allowed to be opened

o Tests current location to ensure vehicle is within designated area

o Tests to ensure that the vehicle is moving (Does not have to be accurate)

o Will close valve if either test fails or the close valve button is pressed

• Receives input from a switch to close valve

• Box informs driver if valve is open

• Box informs driver if vehicle is not detected as moving

• Box must receive input from job done switch

• Box must store log data

o Begins when either driver identifies himself or truck receives area data

o Ends when job done switch is pushed. If this switch isn’t pushed, it

doesn’t send the valve closed log data back to the home office and cannot

take a new job.

• Box finishes log when job done button is pushed

• Box will not open valve after log is closed

• Box will only receive new data after job done button is pushed.

Figure 3.-Diagram of Application Process

Supervisor Calls the Home Office

Home Office Sends:
-Directions

-Disposal Area Information

Truck is Ready

Truck Driver Logs In

Driver Proceeds to the Disposal
Area

Driver Turns on Valve

Log Records
Position Every 5

Secs

Data Log
Starts

Controller Ensures Truck is
Moving and in Area

Driver Pushes Job Done
Button

Driver Closes Valve

Lock Valve Closed & Send
Log Data Back to Home

Office

 8

Log consists of:

1. Truck ID-Stored in memory when “the box” is installed

2. Driver ID-Stored in memory when driver identifies self.

o Is erased when “the box” is turned off because this would make it cheaper

3. Well Site Location-is receives with area location

o Used only for that run

4. Valid area – received electronically

o Used only for that run

5. Time information – when driver identifies self

o When area and well site is received

6. Records position and time when valve is open

7. Continues recording this information periodically (~1 sec)

8. Records valve closing and why. (Which test failed or switch was used)

9. Optional: Amount disposed – Recorded at well site location

o Used only for that run

10. Records any over-rides used

Generation of Design Concepts

 B3E created four proposals for the design of the controller. Two of the designs

call for B3E to develop a custom controller. The other two designs use off-the-shelf

controllers. The main difference between the designs is that the off-the-shelf controllers

have the ability to display moving maps to help the driver find the designated area.

However, these controllers are not able to complete all of the tasks listed in the

 9

requirements for the controller. To use a moving map display means that we will not be

able to implement all of the tests and controls that we had intended for this system.

The following is the description detailing the two controllers that we will build ourselves:

Custom Controller Type 1 (Simple System):

No driving directions – Assume that they will be printed with a map showing location

No way to enter amount to dispose – This will be recorded at home office when the

request for a disposal area is made.

5 Lights
• Valve open
• Inside of Area
• Vehicle Moving
• Power
• Log closed light/Ready for new run information

3 Buttons

• Toggle switch for open/close valve
• Job done button – The button will be cover switch or some other method to

prevent accidental activation.
• Power Switch
• Over-rides provided by either special driver identification or through Qualcomm

Custom Controller Type 2: give driving directions (optional: enter the amount disposed)

• Receives driving directions through Qualcomm.

• Contains:
1. Screen: -display the directions to the disposal area

 -display the amount disposed (optional)
 2. Lights (5): -indicates valve open/closed
 -indicates whether the truck is within the correct area
 -indicates whether the truck is in motion
 -indicates that the log is closed and ready for a new run
 -indicates that the power is on
 3. Buttons (6): -toggle switch for opening/closing the valve
 -“job done” button
 -power switch

 10

 -switch to navigate between the options and to move the
 cursor
 -switch to change the digits
 -enter/exit button (toggle switch)

• Override method: by entering the password of the driver in an over-ride screen on
the controller (one of the menu choices).

The off-the-shelf controllers will use the systems that they have already created in their

operation.

Feasibility Evaluation of Possible Designs

All controllers need a GPS receiver, so this has not been included in the price quoted

Build our own controller:

Type 1-Very Simple (5 lights and 3 buttons on text display):

Cost: $25,000 in development costs for the first one (Dr. Stone, BAE Professor)

Strengths:

• Simple-Easy to use. Very little training required for the driver.

• Contains just the features necessary.

• Tests to ensure the vehicle is moving and is within the designated area.

• Can be integrated with Qualcomm or other wireless data transfer systems

• The lights will clearly display the current state of the controller and any errors

• No need to read English to operate.

Weaknesses:

• No map or directions to tell driver where to go (Assume that this can be created

using the GIS software in the home office. They will save the map as a jpeg and

email it to supervisor who will print it on-site and give to the driver)

 11

• No ability to type in a password directly into the controller to over-ride. (Assume

the driver can call into the home office, and they will send an over-ride through

the Qualcomm network.)

• No ability to type the amount for each disposal run into the controller to add to the

log file. (This must be reported to the home office when asking for them to send

the application area to the controller. They can then add this to the log file at the

home office at the end.)

Type 2-Simple (4 Line Text Display Screen, 5 Lights, 6 Buttons)

Cost: $50,000 in development costs for the first one (Dr. Stone, BAE Professor)

Strengths:

• Simple-Easy to use. Very little training required for the driver.

• Contains just the features necessary.

• Tests to ensure the vehicle is moving and is within the designated area.

• Can be integrated with Qualcomm or other wireless data transfer systems

• The lights will clearly display the current state of the controller and any errors

• Gives driver directions in text format (These need to be created by the people in

the home office when designating the area to which to apply.)

• Over-ride password can be typed into the controller by driver

• Amount that is to be disposed can be entered into the controller on-site.

Weaknesses:

• No map to tell the driver the shape of the designated area. (Once again this can be

created at the home office and printed on-site to be given to the driver)

 12

• Must be able to read English to read directions

Off-the-shelf controllers:

Using Mid-Tech Controller:

Cost:

• Entire system without GPS receiver $11,000

Strengths:

• Displays map of designated area on color screen

• Can receive shape files directly from the GIS package

• It will print out log data in a job report format

Weaknesses:

• Driver can just turn off the prescription map of designated area.

• Logging is not automatic

• Not designed to direct driver to the designated application site, but maps can be

loaded to show the landmarks to find the area.

• Complicated-Large number of menus to navigate and setup.

• Must be able to speak English and have some basic computer knowledge

Using Trimble Controller:

Cost:

• Trimble AgGPS 170—$6750

• Controller—about $1000

• Total at least $8000

 13

Strengths:

• Is designed to help the driver find the site when background maps are loaded for

the area. Guidance system will direct driver to the site.

• Maps are displayed on a color screen

• Complete logging of application data—including driver information.

• ESRI ArcExplorer version 2 is included with the AgGPS 170. (This is software

for the office computer that is used to make the maps of the areas and record the

data applications)

• Can receive shape files directly from the GIS package

• Somewhat simple for the driver to use—We can remove the unnecessary menu

options, so the driver only sees the ones needed to do his job.

Weaknesses:

• Cannot prevent the driver from turning off the prescription map

• Can only communicate through a flash card

• Must be able to speak English and have some basic computer knowledge

 14

Table 1.-Comparison of Controller Designs

Controller Type Strengths Weaknesses

“Very Simple”Custom
Controller

� Simple—Easy to use
� Test to ensure the vehicle

is moving and in
designated area

� Can be integrated with
wireless data transfer
systems

� No need to read English
to operate

� No map or
directions

� No ability for the
driver to over-ride
with passwords

� No ability to record
disposal amount
locally

“Simple” Custom
Controller

� Simple—Easy to use
� Test to ensure the vehicle

is moving and in
designated area

� Can be integrated with
wireless data transfer
systems

� Gives driving directions

� No map
� Must be able to read

English to
understand the
directions

Midtech Legacy 6000

� Display maps on color
screen

� Can receive shape files
directly

� Will print out log data in
a job report format

� Driver can just turn
off the designated
area control

� Must use flash card
for communication

� Complicated
� Must be able to read

English and have
basic computer
skills

Trimble AgGPS 170

� Display maps on color
screen

� Can receive shape files
directly

� Guidance system to help
find the designated site

� Can create more simple
menus

� Driver can just turn
off the designated
area control

� Must use flash card
for communication

� Still more
complicated than
basic systems

� Must be able to read
English and have
basic computer
skills

 15

Determination of Suitable Designs in the Fall Semester

 The proposed designs were sent to Joe Hamilton for review. He decided that the

project should continue with the Trimble design. The facilities for creating a controller

from scratch were currently busy with many other projects. The Trimble controller also

provided the most features for its cost.

Determination of the Final Design

At the end of the final semester, we had decided on the Trimble AgGPS Field

Computer to handle our maps. We waited for a couple of months trying to purchase this

unit. We were not able to obtain it, so we started looking at alternatives. At the same

time, we realized that the single rate controllers we had been hoping to use would not

work. All of these controllers relied on a flow meter to maintain a constant rate. The

drilling mud that we would be pumping through the lines would destroy a flow meter

quickly. We realized that it would be necessary to build our own controller to just turn

on and off a valve. This meant that we could look at field computers that we had

previously disqualified because they did not support many controllers.

After looking at the field computers again, the Raven Viper stood out. This unit

was significantly cheaper than most other field computers but only supported controllers

made by Raven. Raven was one of the few companies to provide the communication

strings that operated its controllers, so we had already decided that it would be best to use

these communication strings in our custom design. The Raven Viper was easily available

and we were able to start using it soon after we made the decision to purchase it.

 16

The controller was constructed with a PIC micro controller from Microchip. A

prototype board from CCS was used. The 16F877A Mini-proto board provided a power

supply, a RS232 output, and an easy to connect to header to provide access to all of the

pins on the chip. The CCS PIC-C complier was used to write the program for the chip.

The reason this products were used was that the team was familiar with the products from

class work. A final design of the system should not rely on these parts as they are only

designed for prototype use.

We decided to use ArcView because it is considered cheap among other GIS

package and it is the most widely used in this area. In addition, ArcView is available in

BAE computer lab. Furthermore, one of the BAE staff is an expert in using ArcView and

he is willing to share his knowledge to us.

Design of the Viper and Controller System

The custom controller takes the information from the Raven Viper and uses it to

control a valve. The Viper puts out messages that tell the controller if the valve is

allowed to be open. The controller also tells the Viper if the valve is open or closed. The

Viper logs this information and creates reports indicating exactly where the material was

applied. The operator also has a switch which must be on for the valve to be open. This

allows the operator to turn off the dispensing of the material at any time.

The messages from the Viper are sent by a RS-232 serial connection. This

connection uses a hardware handshaking system normally. Since the micro controller

used in this project did not have this hardware, the handshaking lines were looped back to

themselves. Pins six and four, and pins seven and eight were connected by loops of wire.

 17

This meant that the Viper also saw the response it wanted and never halted the sending of

information. The Viper's messages and the controller’s response are included in

Appendix A. Notice that the Viper is setup as a Data Communications Equipment. This

means that the controller must be wired as a Data Terminal Equipment.

Another problem with the Viper is that it is possible to shut down its serial port

communications by sending too much data too fast. After experimenting with many

different timings, a setting was found that did not crash the Viper. Set the baud rate to

9600 with no parity, 8 data bits, and 1 stop bit. Then add a 100µs delay between sending

each character. Unfortunately at this speed, the controller will miss communications

from the Viper unless it checks the incoming buffer after sending each character. With a

different compiler and micro controller setup this might not be necessary.

The value switch works by grounding a pin that is pulled high by a pull-up

resistor. This was the B0 pin on the PIC 16F877A which is the external interrupt. The

switch needs to be polled continuously or on an interrupt that will detect any change in its

status. The switch is considered on when the line is grounded through the switch. When

the switch is on, this allows the valve to be turned on if the Viper has sent a message

indicating that the vehicle is in the area designated by the prescription map. If the switch

is off, the valve needs to be shut off immediately. This could also be implemented by

running the output to the valve through the switch and leave out the micro controller

altogether.

The Banjo valve is operated by three wires. Two wires are ground and twelve

volt power. The third wire is switched. When twelve volts are on this line, the valve

opens. When this line is not powered, the valve closes. The valve requires about three

 18

amps on the switched line. Since the micro controller cannot handle that much current,

the micro controller switches this line through a 70-ODC DC output module from

Grayhill. These modules are optically isolated and can handle up to 3.5 amps. This

module was mounted in the 70RCK4 four-channel rack also from Grayhill to provide

terminals for the module.

Figure 4-Control Box Picture

 19

Figure 5-Wiring Schematic

 20

Implementation of Arc-View Design

Downloading Maps

The permitter needs to download some maps in order to determine the suitable area. The

maps are aerial photos, road maps, watershed maps, soil type maps, and township maps.

The maps are available online for free.

Determining Disposal Area

By using ArcView, the user can overlap aerial, road, and watershed maps. First, he/she

can locate the drilling site by looking at the map. Then, the user can find the nearest area

to dispose the liquid waste material. Besides watershed profile, the soil type map is also

used to decide whether the area is suitable for dumping the liquid waste material. After

that, the user can use the township map to determine the township, town section, and

owner of the land.

Creating Prescription Map

ArcView provides features to mark a disposal area, by drawing polygon around the area.

Then, the user can create a prescription map by editing the polygon’s table. Detailed

steps are provided in the user manual.

 21

Results

The Viper and the Control Box

The Viper seems to be a suitable field computer to use in this application. It is

cheaper than others, and provides the necessary information to the controller. The

control box needs to be designed for a final product. The current system is just a

prototype to allow the validation of the design concept. This makes this system very

impractical for use in a commercial product. However, the system does do its job. The

valve is turned off when it is not in the zone allowed by the Viper and turns on when in

the zone and the valve switch is on.

There are several problems in the current prototype. The biggest problem is that

the program occasionally stops receiving characters from the Viper. This seems to be

either an error in prototyping board or with the complier. A function provided with the

compiler should check whether the UART buffer has any characters in it. Occasionally

this function is stuck reporting that no characters are available. The only way to return

the micro controller to operating status is to reset it. The connections on the prototype

are definitely not suitable for use in the field. Too much vibration will cause the power

and RS-232 cables to fall out of the board. The Grayhill module is convenient for design

purposes but is inefficient for use in a final design. A single board should be built to

combine all of these components without extra wiring.

Arc-View

We created prescription maps for an area besides BAE laboratory (parking lot).

Then, we transferred the best one to Raven Viper by using flash card. After that, we

 22

drove the testing vehicle to see whether the map was shown in the Raven Viper. The

map was shown as expected in the Raven Viper. It also had an icon showing current

position in relation to the prescription map.

Projected Budget

Trimble Unit $6,750.00

Fluid Controller ≈$1,000.00

Miscellaneous ≈$1,000.00

Total ≈$9,000.00

Actual Budget to Implement this System

Raven Viper $4000

Controller Box $500

Banjo Valve 1” $400

ARC-VIEW $1500

Total $6400

Conclusion

 The use of GIS information to control the application of hazardous materials is

very possible. Much information is available for free on the Internet. It may take some

training to be able to use all of this information, but once learned, it makes looking at

maps for decision making very easy. Once a decision has been made, the prescription

 23

map can be created following the instructions we have given. This prescription map is

transferred to the Viper. The Viper allows the use of technology that has already been

proven in precision farming to be used for this new task. The custom controller box

allows the use of the Viper without the usually required flow meter. This enables our

process to be used for the much simpler task of on or off control that is not usually an

option on precision farming techniques but is valuable in controlling the disposal of

hazardous materials. The Viper also provides a proven system for the record keeping.

All of these features make this system a viable way to control the placement of hazardous

liquid waste.

 24

Appendix A. Viper-Controller Communication

Strings from the Viper

$R,TD This is a request for the controller to send a Time string
$R,CR This is a request for the controller to send its Calibration strings
$R,DR This is a request for the controller to send its Data strings
$R,TA Unknown use, respond with the actual rate.
$R,RC,xxxx This is a rate change request. The xxxx will be replaced by a number
 indicating the requested rate.

Strings to the Viper

The italicized variable open is set to 1 when the valve is open and to 0 when the valve is
closed.

$R123K,AR,open\r\n Returns the actual rate to the Viper. This message is sent
 about every 2.5 seconds and in response to the rate change
 request and the unknown TA message.

$R123K,C1,10000001,00010001,100,0,0,785\r\n These are the calibration
$R123K,C2,720\r\n strings for the controller.
$R123K,C3,0743,open,0\r\n These are guessed values
 based on information in Appendix 10
 of the Raven SCS 440 manual. It
 should tell the Viper that only boom 1
 is in use and that the console is setup
 with a fast valve to enable zero rates.
 I suspect that there is an error in these
 strings since the Viper will not send a
 zero rate to the controller.

$R123K,D1,1,1\r\n These are the data strings. They should contain
information
$R123K,D2,1,1\r\n about the areas, volumes, and distances covered. The Viper
$R123K,D3,1,1\r\n appears to ignore these numbers so they are all set to 1.

BAD COMMAND This is not supported by the Viper, but it indicates that the
 controller did not properly receive the last string from the
 Viper.

BAD LOGIC This should never be seen unless the program running the
 controller has become corrupted.

 25

Connection Between the Viper and Controller
 The Viper is Data Communications Equipment, and the controller is wired as a
Data Terminal Equipment. The hardware handshaking is looped back to the Viper so that
it always sees that the controller is ready to receive.

 Figure 6.-Viper/Controller Connection

 26

Appendix B. Instructions to Setup and Operate the Viper with the Controller
Installation of the Control Box

Power Connection

The Power for the box is connected to the switched power supply from the Viper.

This is the orange wire from the Viper. This only provides the box power when the Viper

is on. This prevents the box from draining battery power when it is not in use and makes

sure that it is on any time it may need to be used. The power connector is the two pin

Deutsch Connector. The polarity must be correct or severe damage will occur. The

wires on the inside are colored red for positive and black for ground. Ensure that the

power connector lines up properly.

Valve on/off Switch

This is the top two pins of the four pin Deutsch Connector. The switch needs to

connect the two wires when the user wants to allow the valve to be on. The black wire is

a ground. The other wire is only connected to ground when the switch is in the on

position.

Valve Connection

The valve is connected by the three pin round Deutsch Connector. This pin

provides power on the red and black wires to the valve. The third wire is controlled

through the relay to open and close the valve.

Viper Connection

 27

This is a DB9 (nine pin) connection. Plug the line labeled Console from the Viper

into this connector.

Viper Setup

Follow the directions given in the Viper manual.

During the product control setup, the Viper will ask for the controller to be used.

For the console, chose the SCS 440. This is the console that the controller in the box tries

to emulate.

On the serial port setup or commport setup, depending on the version of Viper, for

the console connection chose:

Baud: 9600

Parity: None

Stop bits: 1

Data bits: 8

Since the controller only changes one valve, the number of booms should be set to

1. The section width should be the length of this boom.

Running the Viper and the Controller

 The prescription map created in ARC-VIEW must be placed in the correct

directory on the Viper’s flash card. This should be the Rx Map directory, but the Viper

manual has more information in its appendix on creating prescription maps. To start the

application process, the driver needs to follow the instructions to start a job. These are

listed in the Viper manual with color pictures showing the menus that should be used.

 28

Since the actual method varies depending on the version of the Viper that is being used,

we will leave the specific steps out of this report. Instead, refer the manual that

corresponds with the version that is being used. During the process of starting a job,

several decisions must be made. The operator needs to pick the option to turn on variable

rate application and to record the application data. To enable the variable rate

application, the driver will need to select the prescription map that the permitter has

created and placed on the Viper’s flash card. The driver will need to select the product

that is being varied from the prescription map. This product has been named DRILLING

in all of our examples. These choices should let the driver start the application process.

Once the application is finished, follow the directions to close the job. The Raven will

then record the information to the Flash disk for later transfer to a computer for

permanent filing.

 29

Appendix C. Source Code for the PIC 16F877A with CCS compiler

// the pretend SCS 440
#include <16F877a.h>
#use delay(clock=20000000)
#fuses HS,NOWDT
#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7)

#define TIME_TO_DELAY 100 //time to delay between character sends in us.

int typeInput(char *viperString);
void answerViper(int kind);
int rateChange(char *rateInfo);
int get_raven(char *viperstring, int maxlength);
int1 open;
int count;
int1 allowOpen;
char activeArray[50];
int arraySend;
int1 something_to_send;
int1 two_part_message;
int1 current_signal;

#int_timer1
/*This timer interrupts about every 100ms. It counts for 25 interrupts to reach
every 2.5 seconds. The first action of this timer is too send a message indicating the
actual rate to the Viper. It then checks the variable current_signal. Current_signal
is set every time Viper receives a new rate from the Viper. If a new message has not
been
received in the 2.5 seconds, it turns off the valve. This is what closes the valve usually
since the Viper does not always send zero rates.*/
clock_isr() {
 if(++count > 25)
 {
 answerViper(1);
 if(current_signal)
 {
 current_signal = 0;
 }
 else
 {
 output_high(PIN_C0);
 open = 0;
 allowOpen = 0;
 }

 30

 count = 0;
 }

}

//The following interrupt handles the manual open/close value switch
//The external interrupt on pin B0 requires that the type of edge that
//triggers the the interrupt be set. Since I want to capture both
//this interrupt service routine changes the trigger depending on the
//state of the switch after the interrupt
#int_EXT
EXT_isr()
{
 delay_ms(10); //debounce the button

 if(input(PIN_B0) == 0)
 {
 ext_int_edge(L_TO_H);
 if(allowOpen == 1)
 {
 output_low(PIN_C0);
 open = 1;
 }
 }
 else
 {
 ext_int_edge(H_TO_L);

 output_high(PIN_C0);
 open = 0;

 }
}

void main(void)
{
 char fromViper[20];
 int type; //type = 0 for unknown
 //type = 1 for rate change
 //type = 2 for calibration string request
 //type = 3 for data string request
 //type = 4 for time request
 //type = 5 for actual rate request (TA?)

 31

 int1 good=0;

 open = 0;
 count = 0;
 allowOpen = 0;
 arraySend = 0;
 something_to_send = 0;
 two_part_message = 0;

 if(input(PIN_B0) == 1) //set the condition for the initial external interrupt
 {
 ext_int_edge(H_TO_L);
 }
 else
 {
 ext_int_edge(L_TO_H);
 }

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_8);
 enable_interrupts(INT_TIMER1);
 enable_interrupts(INT_EXT);
 enable_interrupts(GLOBAL);

 while(TRUE)
 {

 /*This first section calls the function that records the string from
 the viper. This function returns a 0 if the string was not properly
 recorded. A zero makes the program start over on reading from the viper
 and prevents the rest of the program from operating on a bad string*/

 do
 {
 good=get_raven(fromViper,20);
 if(!good){
 output_low(PIN_B5);} //turn on the red led if the message is bad
 }while(!good);

 output_high(PIN_B5); //turn off the red led if the message is good
 output_low(PIN_A5); //turn on the green led if the message is good

 type = typeinput(fromViper); //calls a function to determine the request
type

 if(type == 1) //if the request was for a rate change, determine the
 { //requested rate

 32

 allowOpen = ratechange(fromViper);
 current_signal = 1;
 }

 /*Opens the valve if both the manual switch and the rate from the raven
 are requesting that the valve be open*/
 if(input(PIN_B0) == 0 && allowOpen == 1)
 {
 output_low(PIN_C0);
 open = 1;
 }
 else
 {
 output_high(PIN_C0);
 open = 0;
 }

 /*Send the required reponse back to the viper*/
 answerViper(type);
 output_high(PIN_A5); //turn off the yellow led
 output_high(PIN_B4); //turn off the green led

 }
}

int typeInput(char *viperString)
{

/*This function checks the message type from the Viper and returns a value based on that
type.*/
 int i = 0;
 while(viperString[i]!=',')
 {
 i++;
 }
 i++;
 if(viperString[i] == 'R' && viperString[(i+1)] == 'C')
 return 1; //rate change
 if(viperString[i] == 'C' && viperString[(i+1)] == 'R')
 return 2; //calibration string request
 if(viperString[i] == 'D' && viperString[(i+1)] == 'R')
 return 3; //data string request\r\n
 if(viperString[i] == 'T' && viperString[(i+1)] == 'R')
 return 4; //time request
 if(viperString[i] == 'T' && viperString[(i+1)] == 'A')
 return 5; //actual rate request?

 33

 return 0; //do not know the type of request
}

void answerViper(int kind)
{
/*The activeArray is the string that currently needs to be sent to the Viper. This function
loads the proper string into activeArray depending on the type of message that the Viper
sent. The first part of the function checks that the controller is not currently in the middle
of sending a string. If it is, it sends the old message quickly before replacing the
activeArray.*/

/*The compiler does not allow strings beyond a certain length, so the calibration strings
must be sent in two parts. The second part of the calibration string depends on if the
valve is open or not so that is tested for before loading the second part of the string. If
the string has completed it changes the variables to indicate that.*/

 while(something_to_send || two_part_message)
 {
 putc(activeArray[arraySend++]);
 if(activeArray[arraySend] == 0)
 {
 if(two_part_message)
 {
 if(open)
 {
 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,1,0\r\n");
 }
 else
 {
 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,0,0\r\n");
 }
 two_part_message = 0;
 arraySend = 0;
 }
 else
 {
 something_to_send = 0;
 }
 }
 delay_us(TIME_TO_DELAY);
 }

 something_to_send = 1;
 arraySend = 0;

 34

 switch(kind)
 {
 case 0:
 strcpy(activeArray, "BAD COMMAND\r\n");
 break;

 case 1:
 if(open)
 {strcpy(activeArray, "$R123K,AR,1\r\n");}
 else
 {strcpy(activeArray, "$R123K,AR,0\r\n");}
 break;
 case 2:
 two_part_message = 1;
 strcpy(activeArray, "$R123K,C1,10000001,00010001,100,0,0,785\r\n");
 break;
 case 3:
 strcpy(activeArray, "$R123K,D1,1,1\r\n$R123K,D2,1,1\r\n$R123K,D3,1,1\r\n");
 break;
 case 4:
 strcpy(activeArray, "$R123K,TD,17:00,03/01/2005,1\r\n");
 break;
 case 5:
 if(open)
 {strcpy(activeArray, "$R123K,AR,1\r\n");}
 else
 {strcpy(activeArray, "$R123K,AR,0\r\n");}
 break;
 default:
 strcpy(activeArray, "BAD LOGIC\r\n");
 }

}

int rateChange(char *rateInfo)

 /*This function returns the rate requested by the Viper in the
 rate change request string*/
{
 int i = 0;
 int comma_count = 0;

 for(comma_count = 0; comma_count < 2; comma_count++)
 {
 while(rateInfo[i]!=',') //advance the string to the second comma

 35

 {
 i++;
 }
 i++;
 }

 /*This section reads the rate information. If any digit is a non-zero in
 the rate number, it returns a one to turn on the valve. Otherwise the
 while loop will end and the function will return a zero.*/
 while(rateInfo[i] >= '0' && rateInfo[i] <= '9')
 {
 if(rateInfo[i] != '0')
 {
 return 1;
 }
 i++;
 }

 return 0;
}

int get_raven(char *viperOutput, int maxlength)
{

 int len=0;
 char c;
 /*The following do...while loop continues until a $ is received from the Viper.
 The $ is the start of a message from the Viper. This prevents the controller from
 starting the recording in the wrong place.*/
 do
 {
 /*The function kbhit returns a one if there is a character received and waiting in the
UART buffer. This loop therefore continues until a character is received.*/
 while(!kbhit())
 {
 if(something_to_send) //check if there is anything to send
 {
 putc(activeArray[arraySend++]); //send one character from the activeArray
 if(activeArray[arraySend] == 0) //check for the end of the activeArray
 {
 if(two_part_message) //if the message has two parts, load the second.
 {
 if(open)
 {
 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,1,0\r\n");
 }

 36

 else
 {
 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,0,0\r\n");
 }
 two_part_message = 0;
 arraySend = 0;
 }
 else
 {
 something_to_send = 0;
 }
 }
 delay_us(TIME_TO_DELAY); //wait for the TIME_TO_DELAY to prevent from
overloading
 //the Viper's serial communications and shutting it down.
 }
 }
 c = getc();
 }
 while(c != '$'); //only start recording a string if the start
 //character of $ was received.

 /*The function kbhit returns a one if there is a character received and waiting in the
UART buffer. This loop therefore continues until a character is received.*/
 while(!kbhit())
 {
 if(something_to_send) //check if there is anything to send
 {
 putc(activeArray[arraySend++]); //send one character from the activeArray
 if(activeArray[arraySend] == 0) //check for the end of the activeArray
 {
 if(two_part_message)
 {
 if(open)
 {
 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,1,0\r\n");
 }
 else
 {
 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,0,0\r\n");
 }
 two_part_message = 0;
 arraySend = 0;
 }
 else
 {

 37

 something_to_send = 0;
 }
 }
 delay_us(TIME_TO_DELAY);//wait for the TIME_TO_DELAY to prevent from
overloading
 //the Viper's serial communications and shutting it down.
 }
 }

 c=getc(); //get the first letter after the $

 output_low(PIN_B4); //turn on the yellow LED to show that the recording of a
message has started.
 --maxlength; //subtract one from the length of the string to leave room for the null
character.

 /*This do...while loop records the string until either a new line is received or the string
is full. It also outputs messages when it is not receiving the message. If it recieves an
invalid character or reaches the end of the message, it returns a 0 indicating that the
message was not received properly.*/
 do {
 if ((c<=' ')||(c>='~')||(c=='$'))
 return 0; //return not good if not an alphanumeric or if another $ is reached
 if(!(len<maxlength))
 return 0; //return not good if max length of the string is reached
 viperOutput[len]=c;
 len++;

 /*The function kbhit returns a one if there is a character received and waiting in the
UART buffer. This loop therefore continues until a character is received.*/
 while(!kbhit())
 {
 if(something_to_send) //check if there is anything to send
 {
 putc(activeArray[arraySend++]); //send one character from the activeArray
 if(activeArray[arraySend] == 0) //check for the end of the activeArray
 {
 if(two_part_message)
 {
 if(open)
 {
 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,1,0\r\n");
 }
 else
 {
 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,0,0\r\n");

 38

 }
 two_part_message = 0;
 arraySend = 0;
 }
 else
 {
 something_to_send = 0;
 }
 }
 delay_us(TIME_TO_DELAY);//wait for the TIME_TO_DELAY to prevent from
overloading
 //the Viper's serial communications and shutting it down.
 }
 }

 c=getc();
 } while(c!=13); //stop creating string when a new line is received
 viperOutput[len]=0; //add the null character to indicate the end of the string
return 1; //string was recorded correctly

}

 39

Appendix D. ArcView Manual

I. STARTING ARCVIEW

• Open ArcView program
• The window below will pop up

• Select ‘with new View’
• Click “OK” and ArcView will show this window

• Click “No”

 40

II. ACTIVATE EXTENSIONS

• Click “File” and select “Extensions”

• Check the extensions that you need (MrSID Image Support, Projector!, Spatial
analyst, XTools 9/15/03)

• When you select XTools, this window will pop up

• Click Close

 41

III ADDING THEME TO ARCVIEW

• Click “View” and select “Add Theme”

• This window will pop up, so select the directory of the map

A. Adding Road Maps

• Select the directory and set the data source type to be “Feature Data Source”

 42

• Check on the legend and the map will be shown

B. Adding Aerial Maps

• Select the directory and set the data source type to be “Image Data Source”

• Check on the legend and the map will be shown

 43

C. Adding Watershed Maps

• Select the directory and set the data source type to be “Feature Data Source”

• Check on the legend and the map will be shown

D. Adding Soil Type Maps

• Select the directory and set the data source type to be “Grid Data Source”

 44

• Check on the legend and the map will be shown

For soil type map, we can select the desired classification by:

• Change the legend type to be “Unique Value” as shown in the following window

 45

• Select the desirable value field (the window shows when we want our map
showing the soil texture)

• Check on the legend and the map will be shown

 46

IV. OVERLAP AERIAL MAP AND ROAD MAP

• Add aerial map as described in section III-B

• Add road map as described in section III-A

To merge both maps, we need to change the unit of the aerial map to decimal degrees as
shown on the following steps:

• Click “View” and select “Properties”

• Click on Projection when this window pops up

 47

• Select the category to be “UTM-1983”

• Select the type according to the zone number of the area, for example Payne
County is in zone 14

 48

• Check on the legend and both maps will be shown

 49

V. DRAWING POLYGON

• After completed the instruction in section IV, zoom into the targeted area

• Click on “View” and select “New Theme”

• Select the feature type to be “Polygon” and click “OK”

 50

• Select the desired directory and type the file name

• Click on the drop down arrow located on the bottom right corner of the following
icon. Select the polygon shape (it is the sixth option from the top)

 51

• Click on the edges of the polygon, and then double click on the last point

• The polygon will appear as shown

 52

VI. MAKING PRESCRIPTION MAP

A. Drawing the Boundaries of the Application Area

After drawing polygon of our application area, we can determine the boundaries by
drawing outer polygons following the steps below:

• Click on the drop down arrow of the icon, and select the last option as shown
below

• Draw two different outer polygons as shown in the next four windows

 53

 54

B. Edit Prescription Map Table

• Click “Theme” and select “Table”

 55

• The table will be shown as following

• Click “Edit” and select “Add Field” to add another column for the table

• When this window shows up, change the properties of the column

 56

• The new column will be shown as the following

• Select the polygon of which properties need to be changed
• Click “Field” and select “Calculate”

• Select “=” on the “Requests” list

 57

• Enter the code in the specified space, “1” means it is the application area and the
valve will open and “0” means it is outside the application area and the valve will
close.

• The following windows show the prescribed table

 58

• Click “Theme” and select “Stop Editing” to stop editing the polygons (before stop
editing polygons, don’t highlight any polygon on the maps)

• When the following window pops up, click “Yes”

 59

VII. PROJECTING UNITS OF POLYGON

After we draw a polygon on aerial map, we need to project the units to decimal degrees
so that we can put it on the road map using the following steps:

• Click on “View” and select “Properties”
• Change the map units to meters and click “OK”

• Click on the “change projection” icon (first icon from the right)

 60

• Then this window will pop up, click “OK”

• The following window will pop up

• Change the category to “UTM-1983”

 61

• Change the type according to the zone of the area (for example, Payne County is

in zone 14)

• Select output units to “decimal degrees” and click “OK”

• Then, this window will pop up. Select “Yes” if you want to recalculate area,
perimeter, and length using the new units. Otherwise, select “No”

• Click “Yes” to add projected polygon as a theme

 62

• Select the View to show the new polygon

• Select the desired saving directory and rename the polygon file

• After completing above steps, the polygon can be overlapped on the road map

 63

Appendix D. Download Instructions

MAPS WEBSITE ADDRESS

1. Aerial Photo Maps http:// 139.78.101.190/2003img1/
2. Watershed Profile http://www.epa.gov/waterscience/basins/b3webdwn.htm
3. Road Maps http://arcdata.esri.com/data/tiger2000/tiger_download.cfm
4. Township Maps

 http://www.ok.nrcs.usda.gov/technical/GIS/County%20Base%20Maps/plss_page.html
 5. Soil type Maps On CD

DOWNLOADING MAPS FROM WEBSITE

A. Aerial Photo Maps

1. Browse the aerial photo map website
2. Click on the county, which you want to download
3. Select save
4. Open those files to unzip them
5. Click Extract
6. Then click ok to finish unzip them

B. Watershed Profile
1. Open the watershed profile website
2. Click on “Surf Your Watershed”, under the heading of “Data from the web”
3. On the “Surf Your Watershed” page, click on “Locate Your Watershed” picture
4. Use “Find Place” to search watersheds of the desired county
5. You can see the list of watersheds under “Watersheds by County”
6. Open another window for the watershed profile website and click on

http://www.epa.gov/waterscience/ftp/basins/gis_data/huc
7. Click on the desired watershed number
8. Open the core.exe file
9. Select save
10. Unzip the file

C. Road Maps

1. Open the road map website
2. Select the desired state
3. Select the county and click “Submit Selection”
4. Check on “Line Features-Roads” and click “Proceed to Download”
5. Click “Download File”
6. Select save
7. Unzip the file

D. Township Maps

1. Open the township map website

 64

2. Click on the desired county
3. Save the file

GPSGPS--Controlled HazardousControlled Hazardous--
Material ValveMaterial Valve

Oklahoma State University

BAE 4022

Dr. Paul Weckler

Sponsor: Joe Hamilton,

UniBridge Scale Systems

Our ProblemOur Problem

�� Design a system that prevents liquid waste Design a system that prevents liquid waste
disposal in unauthorized sites and to prove disposal in unauthorized sites and to prove
the waste was disposed in desired sites.the waste was disposed in desired sites.

Current PracticesCurrent Practices

��Permitter looks for eligible disposal Permitter looks for eligible disposal
areas near well site.areas near well site.

��Contacts land owners for permission.Contacts land owners for permission.

��Requests permit from the Oklahoma Requests permit from the Oklahoma
Corporation Commission.Corporation Commission.

��Send truck driver from well site to Send truck driver from well site to
disposal site.disposal site.

Current ProblemsCurrent Problems

��Driver has little training.Driver has little training.

��Drilling fluids may be placed in the Drilling fluids may be placed in the
wrong area.wrong area.
�� Accidentally by misreading the mapAccidentally by misreading the map

�� Intentionally by driver to get done fasterIntentionally by driver to get done faster

��Companies may be sued when it was Companies may be sued when it was
actually a competitor was at fault.actually a competitor was at fault.

Our SolutionOur Solution

�� GIS package for permitter in the officeGIS package for permitter in the office
�� Provide necessary maps for permitter Provide necessary maps for permitter
�� Provide methods to designate a disposal areaProvide methods to designate a disposal area

�� Control system and recorder for the driver Control system and recorder for the driver
of the truckof the truck
�� Prevent the vehicle from dispensing drilling Prevent the vehicle from dispensing drilling

fluid unless it is in the permitted areafluid unless it is in the permitted area
�� Record application rates and paths for record Record application rates and paths for record

keepingkeeping

The Project ScheduleThe Project Schedule

GIS PackageGIS Package

�� Use Use ArcViewArcView

�� Permitter downloads necessary maps to Permitter downloads necessary maps to
determine disposal area:determine disposal area:
�� Aerial photoAerial photo

�� Soil type mapSoil type map

�� Watershed mapWatershed map

�� Road mapRoad map

�� Town section mapTown section map

Aerial, RoadsAerial, Roads, Dams, , Dams, and Riversand Rivers
MapMap

Soil Type MapSoil Type Map

Prescription MapPrescription Map

Raven ViperRaven Viper

Controller BoxController Box

Our TruckOur Truck

BudgetBudget

≈$9,000.00Total

≈$1,000.00Miscellaneous

≈$1,000.00Fluid
Controller

$6,750.00Trimble Unit

Expected Budget Actual Budget

$400Banjo Valve
1”

$6900Total

$1500ARC-VIEW

$500Controller-
Box

$4000Raven Viper

ConclusionsConclusions

�� It is possible to limit the disposal of It is possible to limit the disposal of
material to only a designated area.material to only a designated area.

�� GIS package requires some training to be GIS package requires some training to be
used.used.

�� Variety of maps can be obtained free Variety of maps can be obtained free
through internet.through internet.

�� It is possible to control a valve with the It is possible to control a valve with the
output from a Viper.output from a Viper.

B3E

Joe Dvorak

Vania Pradipta

Cheau Lin Chai

Developing innovative solutions to protect the world we live on

 1

Table of Contents

 Page Number

1. Problem Statement 2

2. Statement of Work 2

3. Patent Information 5

4. Engineering Specifications 5

5. Generation of Design Concepts 8

6. Feasibility Evaluation of Possible Designs 10

7. Determination of Suitable Designs in the Fall Semester 15

8. Determination of the Final Design 15

9. Design of the Viper and Controller System 16

10. Implementation of Arc-View Design 20

11. Results 21

12. Budgets 22

13. Conclusion 22

14. Appendix A 24

15. Appendix B 26

16. Appendix C 29

17. Appendix D 39

 2

Problem Statement

Our problem statement is to design a system that prevents liquid waste disposal in

unauthorized sites and to prove the waste was disposed in authorized sites.

Statement of Work

This project involves developing a system to help oil well disposal contractors

properly deal with oil well waste products. This project must be part of an effort to solve

a system-wide problem. The full solution to the issue must assist contractors from when

they first are informed of the well site location to logging of the final disposal site. Many

steps are involved in this task. The system developed will involve many different people

and must be understandable by every one of these people. In the end, a system must be

designed that prevents liquid waste disposal in unauthorized sites and to prove the waste

was disposed in allowable sites.

 Figure 1-Oil Drilling Rig

The proposed system begins when the drilling contractor hires the disposal

contractor to remove the drilling fluid waste and informs him of the location of the

proposed well. The disposal contractor types the well location into the computer program

 3

created by the project, which is installed at home office. The program will then show the

disposal contractor eligible locations for a disposal site. To determine these eligible

locations for disposal, the program must consider topographical, soil type, land

ownership, and watershed information. The allowed combinations of soil type and

typographical areas will change depending on the location within the state, and the

program must know all of these permitted types in each area. The contractor selects a

site and contacts the owner of the land for preliminary approval. Once this approval has

been granted, the permitter for the disposal company writes up a permit for this location

and sends this to the Oklahoma Corporation Commission. After having the permit

certified, the people in the home office send this information out to the supervisor in the

field.

Figure 2-Disposal Truck

 The supervisor in the field then takes over the process. When a truck is ready to

deploy, the supervisor will call the home office and relay the well site location and truck

ID to the home office. They then send disposal area information over the Qualcomm

 4

network to the truck. The driver then identifies himself to the software in the truck. This

creates a log entry in the data log in the truck. The equipment on the truck tells the driver

when to go to get to the disposal site. The driver follows the driving instructions to the

site. When he gets there, he hits a button to open the valve on the truck. The program on

the truck uses data from a GPS receiver to check to make sure that the truck is within the

designated disposal area. If the truck is within the allowed area, the valve opens and the

driver is allowed to spread the drilling waste. The program on the truck logs the position

and time when the valve was opened and continues to log both position and time until the

driver closes the valve. The driver is allowed to open the valve again if he is still in the

designated area; otherwise the valve will still remain closed. Also, whenever the valve is

open, the truck is required to be in motion or the program will close the valve again.

When the driver has finished disposing of the drilling fluids, he hits a “job done” button.

This closes the log and sends the information back to the home office. The valve will

also lock at this point and can not be opened until the truck returns to the supervisor. The

truck is then ready to be refilled and restart the process.

 The data logs from the trucks are stored at the home office. A program at the

home office allows the people there to easily pull up a map showing all the disposal

information. This information can be filtered by date and location to enable anyone to

easily understand exactly where the fluids were applied. This system must present the

information in an easy to use manner since it could be used by untrained personnel to

prove proper disposal in courts. This step concludes the process that we are proposing.

 Several considerations must be taken into account at the system level. The system

needs to be tamperproof, so that the information it gathers can be trusted. It must be easy

 5

to use, especially where it interfaces with the driver since this person is most likely

untrained. The design must not break down often, since the contractor will be relying on

it to handle the entire process of his business. All parts of the system must be accurate

and properly communicate with each other. This project has many aspects that must be

solved, but offers a great benefit to society when it is implemented.

Patent Information

 B3E has researched patents on a wide variety of topics, given the large scope of

this project. When researching patents for waste disposal valve, we found a patent in

waste disposal monitoring system, United States Patent # 4,549,570. The system

involves a valve that monitors the flow of fluid waste to a reservoir. It also includes

density circuitry, level detector circuitry, counter, and counter delay circuitry. All of

these are placed in the reservoir and not in the truck. Therefore, B3E does not foresee

any complications with our project.

 When researching patents related to finding direction to the disposal sites, we

found patent # 6,784,832. This patent is for an in-vehicle information system. It covers

giving direction based on GPS data and determining route for the vehicle. Therefore,

B3E would most likely need to purchase a direction system.

Engineering Specifications

 B3E will only plan on designing the parts in the truck. We probably do not have

the time to create a GIS software package. B3E will make sure that the truck will

communicate with the GIS software.

 6

 B3E has created a list of requirements for the controller based on our

understanding of the problem with which we are faced. The following are the

requirements that we have for the controller:

 Has a method for electronic identification of the driver

 Receives area data and well site data in an electronic form (Qualcomm?)

o Area data is a polygon created by GPS lat/long points in a text format-Use

NMEA 0183 for GPS format

o Well site data will be a single GPS location

 Optional: Receives driver directions in an electronic form

o Directions will be text in English only

 Box informs driver when vehicle is within the designated area

 Receives input from a switch to open valve

 Tests to determine whether valve is allowed to be opened

o Tests current location to ensure vehicle is within designated area

o Tests to ensure that the vehicle is moving (Does not have to be accurate)

o Will close valve if either test fails or the close valve button is pressed

 Receives input from a switch to close valve

 Box informs driver if valve is open

 Box informs driver if vehicle is not detected as moving

 Box must receive input from job done switch

 Box must store log data

o Begins when either driver identifies himself or truck receives area data

o Ends when job done switch is pushed. If this switch isn’t pushed, it

doesn’t send the valve closed log data back to the home office and cannot

take a new job.

 Box finishes log when job done button is pushed

 Box will not open valve after log is closed

 Box will only receive new data after job done button is pushed.

Figure 3.-Diagram of Application Process

Supervisor Calls the Home Office

Home Office Sends:

-Directions

-Disposal Area Information

Truck is Ready

Truck Driver Logs In

Driver Proceeds to the Disposal

Area

Driver Turns on Valve

Log Records

Position Every 5

Secs

Data Log

Starts

Controller Ensures Truck is

Moving and in Area

Driver Pushes Job Done

Button

Driver Closes Valve

Lock Valve Closed & Send

Log Data Back to Home

Office

 8

Log consists of:

1. Truck ID-Stored in memory when “the box” is installed

2. Driver ID-Stored in memory when driver identifies self.

o Is erased when “the box” is turned off because this would make it cheaper

3. Well Site Location-is receives with area location

o Used only for that run

4. Valid area – received electronically

o Used only for that run

5. Time information – when driver identifies self

o When area and well site is received

6. Records position and time when valve is open

7. Continues recording this information periodically (~1 sec)

8. Records valve closing and why. (Which test failed or switch was used)

9. Optional: Amount disposed – Recorded at well site location

o Used only for that run

10. Records any over-rides used

Generation of Design Concepts

 B3E created four proposals for the design of the controller. Two of the designs

call for B3E to develop a custom controller. The other two designs use off-the-shelf

controllers. The main difference between the designs is that the off-the-shelf controllers

have the ability to display moving maps to help the driver find the designated area.

However, these controllers are not able to complete all of the tasks listed in the

 9

requirements for the controller. To use a moving map display means that we will not be

able to implement all of the tests and controls that we had intended for this system.

The following is the description detailing the two controllers that we will build ourselves:

Custom Controller Type 1 (Simple System):

No driving directions – Assume that they will be printed with a map showing location

No way to enter amount to dispose – This will be recorded at home office when the

request for a disposal area is made.

5 Lights

 Valve open

 Inside of Area

 Vehicle Moving

 Power

 Log closed light/Ready for new run information

3 Buttons

 Toggle switch for open/close valve

 Job done button – The button will be cover switch or some other method to

prevent accidental activation.

 Power Switch

 Over-rides provided by either special driver identification or through Qualcomm

Custom Controller Type 2: give driving directions (optional: enter the amount disposed)

 Receives driving directions through Qualcomm.

 Contains:

1. Screen: -display the directions to the disposal area

 -display the amount disposed (optional)

 2. Lights (5): -indicates valve open/closed

 -indicates whether the truck is within the correct area

 -indicates whether the truck is in motion

 -indicates that the log is closed and ready for a new run

 -indicates that the power is on

 3. Buttons (6): -toggle switch for opening/closing the valve

 -“job done” button

 -power switch

 10

 -switch to navigate between the options and to move the

 cursor

 -switch to change the digits

 -enter/exit button (toggle switch)

 Override method: by entering the password of the driver in an over-ride screen on

the controller (one of the menu choices).

The off-the-shelf controllers will use the systems that they have already created in their

operation.

Feasibility Evaluation of Possible Designs

All controllers need a GPS receiver, so this has not been included in the price quoted

Build our own controller:

Type 1-Very Simple (5 lights and 3 buttons on text display):

Cost: $25,000 in development costs for the first one (Dr. Stone, BAE Professor)

Strengths:

 Simple-Easy to use. Very little training required for the driver.

 Contains just the features necessary.

 Tests to ensure the vehicle is moving and is within the designated area.

 Can be integrated with Qualcomm or other wireless data transfer systems

 The lights will clearly display the current state of the controller and any errors

 No need to read English to operate.

Weaknesses:

 No map or directions to tell driver where to go (Assume that this can be created

using the GIS software in the home office. They will save the map as a jpeg and

email it to supervisor who will print it on-site and give to the driver)

 11

 No ability to type in a password directly into the controller to over-ride. (Assume

the driver can call into the home office, and they will send an over-ride through

the Qualcomm network.)

 No ability to type the amount for each disposal run into the controller to add to the

log file. (This must be reported to the home office when asking for them to send

the application area to the controller. They can then add this to the log file at the

home office at the end.)

Type 2-Simple (4 Line Text Display Screen, 5 Lights, 6 Buttons)

Cost: $50,000 in development costs for the first one (Dr. Stone, BAE Professor)

Strengths:

 Simple-Easy to use. Very little training required for the driver.

 Contains just the features necessary.

 Tests to ensure the vehicle is moving and is within the designated area.

 Can be integrated with Qualcomm or other wireless data transfer systems

 The lights will clearly display the current state of the controller and any errors

 Gives driver directions in text format (These need to be created by the people in

the home office when designating the area to which to apply.)

 Over-ride password can be typed into the controller by driver

 Amount that is to be disposed can be entered into the controller on-site.

Weaknesses:

 No map to tell the driver the shape of the designated area. (Once again this can be

created at the home office and printed on-site to be given to the driver)

 12

 Must be able to read English to read directions

Off-the-shelf controllers:

Using Mid-Tech Controller:

Cost:

 Entire system without GPS receiver $11,000

Strengths:

 Displays map of designated area on color screen

 Can receive shape files directly from the GIS package

 It will print out log data in a job report format

Weaknesses:

 Driver can just turn off the prescription map of designated area.

 Logging is not automatic

 Not designed to direct driver to the designated application site, but maps can be

loaded to show the landmarks to find the area.

 Complicated-Large number of menus to navigate and setup.

 Must be able to speak English and have some basic computer knowledge

Using Trimble Controller:

Cost:

 Trimble AgGPS 170—$6750

 Controller—about $1000

 Total at least $8000

 13

Strengths:

 Is designed to help the driver find the site when background maps are loaded for

the area. Guidance system will direct driver to the site.

 Maps are displayed on a color screen

 Complete logging of application data—including driver information.

 ESRI ArcExplorer version 2 is included with the AgGPS 170. (This is software

for the office computer that is used to make the maps of the areas and record the

data applications)

 Can receive shape files directly from the GIS package

 Somewhat simple for the driver to use—We can remove the unnecessary menu

options, so the driver only sees the ones needed to do his job.

Weaknesses:

 Cannot prevent the driver from turning off the prescription map

 Can only communicate through a flash card

 Must be able to speak English and have some basic computer knowledge

 14

Table 1.-Comparison of Controller Designs

Controller Type Strengths Weaknesses

“Very Simple”Custom

Controller

 Simple—Easy to use

 Test to ensure the vehicle

is moving and in

designated area

 Can be integrated with

wireless data transfer

systems

 No need to read English

to operate

 No map or

directions

 No ability for the

driver to over-ride

with passwords

 No ability to record

disposal amount

locally

“Simple” Custom

Controller

 Simple—Easy to use

 Test to ensure the vehicle

is moving and in

designated area

 Can be integrated with

wireless data transfer

systems

 Gives driving directions

 No map

 Must be able to read

English to

understand the

directions

Midtech Legacy 6000

 Display maps on color

screen

 Can receive shape files

directly

 Will print out log data in

a job report format

 Driver can just turn

off the designated

area control

 Must use flash card

for communication

 Complicated

 Must be able to read

English and have

basic computer

skills

Trimble AgGPS 170

 Display maps on color

screen

 Can receive shape files

directly

 Guidance system to help

find the designated site

 Can create more simple

menus

 Driver can just turn

off the designated

area control

 Must use flash card

for communication

 Still more

complicated than

basic systems

 Must be able to read

English and have

basic computer

skills

 15

Determination of Suitable Designs in the Fall Semester

 The proposed designs were sent to Joe Hamilton for review. He decided that the

project should continue with the Trimble design. The facilities for creating a controller

from scratch were currently busy with many other projects. The Trimble controller also

provided the most features for its cost.

Determination of the Final Design

At the end of the final semester, we had decided on the Trimble AgGPS Field

Computer to handle our maps. We waited for a couple of months trying to purchase this

unit. We were not able to obtain it, so we started looking at alternatives. At the same

time, we realized that the single rate controllers we had been hoping to use would not

work. All of these controllers relied on a flow meter to maintain a constant rate. The

drilling mud that we would be pumping through the lines would destroy a flow meter

quickly. We realized that it would be necessary to build our own controller to just turn

on and off a valve. This meant that we could look at field computers that we had

previously disqualified because they did not support many controllers.

After looking at the field computers again, the Raven Viper stood out. This unit

was significantly cheaper than most other field computers but only supported controllers

made by Raven. Raven was one of the few companies to provide the communication

strings that operated its controllers, so we had already decided that it would be best to use

these communication strings in our custom design. The Raven Viper was easily available

and we were able to start using it soon after we made the decision to purchase it.

 16

The controller was constructed with a PIC micro controller from Microchip. A

prototype board from CCS was used. The 16F877A Mini-proto board provided a power

supply, a RS232 output, and an easy to connect to header to provide access to all of the

pins on the chip. The CCS PIC-C complier was used to write the program for the chip.

The reason this products were used was that the team was familiar with the products from

class work. A final design of the system should not rely on these parts as they are only

designed for prototype use.

We decided to use ArcView because it is considered cheap among other GIS

package and it is the most widely used in this area. In addition, ArcView is available in

BAE computer lab. Furthermore, one of the BAE staff is an expert in using ArcView and

he is willing to share his knowledge to us.

Design of the Viper and Controller System

The custom controller takes the information from the Raven Viper and uses it to

control a valve. The Viper puts out messages that tell the controller if the valve is

allowed to be open. The controller also tells the Viper if the valve is open or closed. The

Viper logs this information and creates reports indicating exactly where the material was

applied. The operator also has a switch which must be on for the valve to be open. This

allows the operator to turn off the dispensing of the material at any time.

The messages from the Viper are sent by a RS-232 serial connection. This

connection uses a hardware handshaking system normally. Since the micro controller

used in this project did not have this hardware, the handshaking lines were looped back to

themselves. Pins six and four, and pins seven and eight were connected by loops of wire.

 17

This meant that the Viper also saw the response it wanted and never halted the sending of

information. The Viper's messages and the controller’s response are included in

Appendix A. Notice that the Viper is setup as a Data Communications Equipment. This

means that the controller must be wired as a Data Terminal Equipment.

Another problem with the Viper is that it is possible to shut down its serial port

communications by sending too much data too fast. After experimenting with many

different timings, a setting was found that did not crash the Viper. Set the baud rate to

9600 with no parity, 8 data bits, and 1 stop bit. Then add a 100μs delay between sending

each character. Unfortunately at this speed, the controller will miss communications

from the Viper unless it checks the incoming buffer after sending each character. With a

different compiler and micro controller setup this might not be necessary.

The value switch works by grounding a pin that is pulled high by a pull-up

resistor. This was the B0 pin on the PIC 16F877A which is the external interrupt. The

switch needs to be polled continuously or on an interrupt that will detect any change in its

status. The switch is considered on when the line is grounded through the switch. When

the switch is on, this allows the valve to be turned on if the Viper has sent a message

indicating that the vehicle is in the area designated by the prescription map. If the switch

is off, the valve needs to be shut off immediately. This could also be implemented by

running the output to the valve through the switch and leave out the micro controller

altogether.

The Banjo valve is operated by three wires. Two wires are ground and twelve

volt power. The third wire is switched. When twelve volts are on this line, the valve

opens. When this line is not powered, the valve closes. The valve requires about three

 18

amps on the switched line. Since the micro controller cannot handle that much current,

the micro controller switches this line through a 70-ODC DC output module from

Grayhill. These modules are optically isolated and can handle up to 3.5 amps. This

module was mounted in the 70RCK4 four-channel rack also from Grayhill to provide

terminals for the module.

Figure 4-Control Box Picture

 19

Figure 5-Wiring Schematic

 20

Implementation of Arc-View Design

Downloading Maps

The permitter needs to download some maps in order to determine the suitable area. The

maps are aerial photos, road maps, watershed maps, soil type maps, and township maps.

The maps are available online for free.

Determining Disposal Area

By using ArcView, the user can overlap aerial, road, and watershed maps. First, he/she

can locate the drilling site by looking at the map. Then, the user can find the nearest area

to dispose the liquid waste material. Besides watershed profile, the soil type map is also

used to decide whether the area is suitable for dumping the liquid waste material. After

that, the user can use the township map to determine the township, town section, and

owner of the land.

Creating Prescription Map

ArcView provides features to mark a disposal area, by drawing polygon around the area.

Then, the user can create a prescription map by editing the polygon’s table. Detailed

steps are provided in the user manual.

 21

Results

The Viper and the Control Box

The Viper seems to be a suitable field computer to use in this application. It is

cheaper than others, and provides the necessary information to the controller. The

control box needs to be designed for a final product. The current system is just a

prototype to allow the validation of the design concept. This makes this system very

impractical for use in a commercial product. However, the system does do its job. The

valve is turned off when it is not in the zone allowed by the Viper and turns on when in

the zone and the valve switch is on.

There are several problems in the current prototype. The biggest problem is that

the program occasionally stops receiving characters from the Viper. This seems to be

either an error in prototyping board or with the complier. A function provided with the

compiler should check whether the UART buffer has any characters in it. Occasionally

this function is stuck reporting that no characters are available. The only way to return

the micro controller to operating status is to reset it. The connections on the prototype

are definitely not suitable for use in the field. Too much vibration will cause the power

and RS-232 cables to fall out of the board. The Grayhill module is convenient for design

purposes but is inefficient for use in a final design. A single board should be built to

combine all of these components without extra wiring.

Arc-View

We created prescription maps for an area besides BAE laboratory (parking lot).

Then, we transferred the best one to Raven Viper by using flash card. After that, we

 22

drove the testing vehicle to see whether the map was shown in the Raven Viper. The

map was shown as expected in the Raven Viper. It also had an icon showing current

position in relation to the prescription map.

Projected Budget

Trimble Unit $6,750.00

Fluid Controller ≈$1,000.00

Miscellaneous ≈$1,000.00

Total ≈$9,000.00

Actual Budget to Implement this System

Raven Viper $4000

Controller Box $500

Banjo Valve 1” $400

ARC-VIEW $1500

Total $6400

Conclusion

 The use of GIS information to control the application of hazardous materials is

very possible. Much information is available for free on the Internet. It may take some

training to be able to use all of this information, but once learned, it makes looking at

maps for decision making very easy. Once a decision has been made, the prescription

 23

map can be created following the instructions we have given. This prescription map is

transferred to the Viper. The Viper allows the use of technology that has already been

proven in precision farming to be used for this new task. The custom controller box

allows the use of the Viper without the usually required flow meter. This enables our

process to be used for the much simpler task of on or off control that is not usually an

option on precision farming techniques but is valuable in controlling the disposal of

hazardous materials. The Viper also provides a proven system for the record keeping.

All of these features make this system a viable way to control the placement of hazardous

liquid waste.

 24

Appendix A. Viper-Controller Communication

Strings from the Viper

$R,TD This is a request for the controller to send a Time string

$R,CR This is a request for the controller to send its Calibration strings

$R,DR This is a request for the controller to send its Data strings

$R,TA Unknown use, respond with the actual rate.

$R,RC,xxxx This is a rate change request. The xxxx will be replaced by a number

 indicating the requested rate.

Strings to the Viper

The italicized variable open is set to 1 when the valve is open and to 0 when the valve is

closed.

$R123K,AR,open\r\n Returns the actual rate to the Viper. This message is sent

 about every 2.5 seconds and in response to the rate change

 request and the unknown TA message.

$R123K,C1,10000001,00010001,100,0,0,785\r\n These are the calibration

$R123K,C2,720\r\n strings for the controller.

$R123K,C3,0743,open,0\r\n These are guessed values

 based on information in Appendix 10

 of the Raven SCS 440 manual. It

 should tell the Viper that only boom 1

 is in use and that the console is setup

 with a fast valve to enable zero rates.

 I suspect that there is an error in these

 strings since the Viper will not send a

 zero rate to the controller.

$R123K,D1,1,1\r\n These are the data strings. They should contain

information

$R123K,D2,1,1\r\n about the areas, volumes, and distances covered. The Viper

$R123K,D3,1,1\r\n appears to ignore these numbers so they are all set to 1.

BAD COMMAND This is not supported by the Viper, but it indicates that the

 controller did not properly receive the last string from the

 Viper.

BAD LOGIC This should never be seen unless the program running the

 controller has become corrupted.

 25

Connection Between the Viper and Controller

 The Viper is Data Communications Equipment, and the controller is wired as a

Data Terminal Equipment. The hardware handshaking is looped back to the Viper so that

it always sees that the controller is ready to receive.

 Figure 6.-Viper/Controller Connection

 26

Appendix B. Instructions to Setup and Operate the Viper with the Controller

Installation of the Control Box

Power Connection

The Power for the box is connected to the switched power supply from the Viper.

This is the orange wire from the Viper. This only provides the box power when the Viper

is on. This prevents the box from draining battery power when it is not in use and makes

sure that it is on any time it may need to be used. The power connector is the two pin

Deutsch Connector. The polarity must be correct or severe damage will occur. The

wires on the inside are colored red for positive and black for ground. Ensure that the

power connector lines up properly.

Valve on/off Switch

This is the top two pins of the four pin Deutsch Connector. The switch needs to

connect the two wires when the user wants to allow the valve to be on. The black wire is

a ground. The other wire is only connected to ground when the switch is in the on

position.

Valve Connection

The valve is connected by the three pin round Deutsch Connector. This pin

provides power on the red and black wires to the valve. The third wire is controlled

through the relay to open and close the valve.

Viper Connection

 27

This is a DB9 (nine pin) connection. Plug the line labeled Console from the Viper

into this connector.

Viper Setup

Follow the directions given in the Viper manual.

During the product control setup, the Viper will ask for the controller to be used.

For the console, chose the SCS 440. This is the console that the controller in the box tries

to emulate.

On the serial port setup or commport setup, depending on the version of Viper, for

the console connection chose:

Baud: 9600

Parity: None

Stop bits: 1

Data bits: 8

Since the controller only changes one valve, the number of booms should be set to

1. The section width should be the length of this boom.

Running the Viper and the Controller

 The prescription map created in ARC-VIEW must be placed in the correct

directory on the Viper’s flash card. This should be the Rx Map directory, but the Viper

manual has more information in its appendix on creating prescription maps. To start the

application process, the driver needs to follow the instructions to start a job. These are

listed in the Viper manual with color pictures showing the menus that should be used.

 28

Since the actual method varies depending on the version of the Viper that is being used,

we will leave the specific steps out of this report. Instead, refer the manual that

corresponds with the version that is being used. During the process of starting a job,

several decisions must be made. The operator needs to pick the option to turn on variable

rate application and to record the application data. To enable the variable rate

application, the driver will need to select the prescription map that the permitter has

created and placed on the Viper’s flash card. The driver will need to select the product

that is being varied from the prescription map. This product has been named DRILLING

in all of our examples. These choices should let the driver start the application process.

Once the application is finished, follow the directions to close the job. The Raven will

then record the information to the Flash disk for later transfer to a computer for

permanent filing.

 29

Appendix C. Source Code for the PIC 16F877A with CCS compiler

// the pretend SCS 440

#include <16F877a.h>

#use delay(clock=20000000)

#fuses HS,NOWDT

#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7)

#define TIME_TO_DELAY 100 //time to delay between character sends in us.

int typeInput(char *viperString);

void answerViper(int kind);

int rateChange(char *rateInfo);

int get_raven(char *viperstring, int maxlength);

int1 open;

int count;

int1 allowOpen;

char activeArray[50];

int arraySend;

int1 something_to_send;

int1 two_part_message;

int1 current_signal;

#int_timer1

/*This timer interrupts about every 100ms. It counts for 25 interrupts to reach

every 2.5 seconds. The first action of this timer is too send a message indicating the

actual rate to the Viper. It then checks the variable current_signal. Current_signal

is set every time Viper receives a new rate from the Viper. If a new message has not

been

received in the 2.5 seconds, it turns off the valve. This is what closes the valve usually

since the Viper does not always send zero rates.*/

clock_isr() {

 if(++count > 25)

 {

 answerViper(1);

 if(current_signal)

 {

 current_signal = 0;

 }

 else

 {

 output_high(PIN_C0);

 open = 0;

 allowOpen = 0;

 }

 30

 count = 0;

 }

}

//The following interrupt handles the manual open/close value switch

//The external interrupt on pin B0 requires that the type of edge that

//triggers the the interrupt be set. Since I want to capture both

//this interrupt service routine changes the trigger depending on the

//state of the switch after the interrupt

#int_EXT

EXT_isr()

{

 delay_ms(10); //debounce the button

 if(input(PIN_B0) == 0)

 {

 ext_int_edge(L_TO_H);

 if(allowOpen == 1)

 {

 output_low(PIN_C0);

 open = 1;

 }

 }

 else

 {

 ext_int_edge(H_TO_L);

 output_high(PIN_C0);

 open = 0;

 }

}

void main(void)

{

 char fromViper[20];

 int type; //type = 0 for unknown

 //type = 1 for rate change

 //type = 2 for calibration string request

 //type = 3 for data string request

 //type = 4 for time request

 //type = 5 for actual rate request (TA?)

 31

 int1 good=0;

 open = 0;

 count = 0;

 allowOpen = 0;

 arraySend = 0;

 something_to_send = 0;

 two_part_message = 0;

 if(input(PIN_B0) == 1) //set the condition for the initial external interrupt

 {

 ext_int_edge(H_TO_L);

 }

 else

 {

 ext_int_edge(L_TO_H);

 }

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_8);

 enable_interrupts(INT_TIMER1);

 enable_interrupts(INT_EXT);

 enable_interrupts(GLOBAL);

 while(TRUE)

 {

 /*This first section calls the function that records the string from

 the viper. This function returns a 0 if the string was not properly

 recorded. A zero makes the program start over on reading from the viper

 and prevents the rest of the program from operating on a bad string*/

 do

 {

 good=get_raven(fromViper,20);

 if(!good){

 output_low(PIN_B5);} //turn on the red led if the message is bad

 }while(!good);

 output_high(PIN_B5); //turn off the red led if the message is good

 output_low(PIN_A5); //turn on the green led if the message is good

 type = typeinput(fromViper); //calls a function to determine the request

type

 if(type == 1) //if the request was for a rate change, determine the

 { //requested rate

 32

 allowOpen = ratechange(fromViper);

 current_signal = 1;

 }

 /*Opens the valve if both the manual switch and the rate from the raven

 are requesting that the valve be open*/

 if(input(PIN_B0) == 0 && allowOpen == 1)

 {

 output_low(PIN_C0);

 open = 1;

 }

 else

 {

 output_high(PIN_C0);

 open = 0;

 }

 /*Send the required reponse back to the viper*/

 answerViper(type);

 output_high(PIN_A5); //turn off the yellow led

 output_high(PIN_B4); //turn off the green led

 }

}

int typeInput(char *viperString)

{

/*This function checks the message type from the Viper and returns a value based on that

type.*/

 int i = 0;

 while(viperString[i]!=',')

 {

 i++;

 }

 i++;

 if(viperString[i] == 'R' && viperString[(i+1)] == 'C')

 return 1; //rate change

 if(viperString[i] == 'C' && viperString[(i+1)] == 'R')

 return 2; //calibration string request

 if(viperString[i] == 'D' && viperString[(i+1)] == 'R')

 return 3; //data string request\r\n

 if(viperString[i] == 'T' && viperString[(i+1)] == 'R')

 return 4; //time request

 if(viperString[i] == 'T' && viperString[(i+1)] == 'A')

 return 5; //actual rate request?

 33

 return 0; //do not know the type of request

}

void answerViper(int kind)

{

/*The activeArray is the string that currently needs to be sent to the Viper. This function

loads the proper string into activeArray depending on the type of message that the Viper

sent. The first part of the function checks that the controller is not currently in the middle

of sending a string. If it is, it sends the old message quickly before replacing the

activeArray.*/

/*The compiler does not allow strings beyond a certain length, so the calibration strings

must be sent in two parts. The second part of the calibration string depends on if the

valve is open or not so that is tested for before loading the second part of the string. If

the string has completed it changes the variables to indicate that.*/

 while(something_to_send || two_part_message)

 {

 putc(activeArray[arraySend++]);

 if(activeArray[arraySend] == 0)

 {

 if(two_part_message)

 {

 if(open)

 {

 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,1,0\r\n");

 }

 else

 {

 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,0,0\r\n");

 }

 two_part_message = 0;

 arraySend = 0;

 }

 else

 {

 something_to_send = 0;

 }

 }

 delay_us(TIME_TO_DELAY);

 }

 something_to_send = 1;

 arraySend = 0;

 34

 switch(kind)

 {

 case 0:

 strcpy(activeArray, "BAD COMMAND\r\n");

 break;

 case 1:

 if(open)

 {strcpy(activeArray, "$R123K,AR,1\r\n");}

 else

 {strcpy(activeArray, "$R123K,AR,0\r\n");}

 break;

 case 2:

 two_part_message = 1;

 strcpy(activeArray, "$R123K,C1,10000001,00010001,100,0,0,785\r\n");

 break;

 case 3:

 strcpy(activeArray, "$R123K,D1,1,1\r\n$R123K,D2,1,1\r\n$R123K,D3,1,1\r\n");

 break;

 case 4:

 strcpy(activeArray, "$R123K,TD,17:00,03/01/2005,1\r\n");

 break;

 case 5:

 if(open)

 {strcpy(activeArray, "$R123K,AR,1\r\n");}

 else

 {strcpy(activeArray, "$R123K,AR,0\r\n");}

 break;

 default:

 strcpy(activeArray, "BAD LOGIC\r\n");

 }

}

int rateChange(char *rateInfo)

 /*This function returns the rate requested by the Viper in the

 rate change request string*/

{

 int i = 0;

 int comma_count = 0;

 for(comma_count = 0; comma_count < 2; comma_count++)

 {

 while(rateInfo[i]!=',') //advance the string to the second comma

 35

 {

 i++;

 }

 i++;

 }

 /*This section reads the rate information. If any digit is a non-zero in

 the rate number, it returns a one to turn on the valve. Otherwise the

 while loop will end and the function will return a zero.*/

 while(rateInfo[i] >= '0' && rateInfo[i] <= '9')

 {

 if(rateInfo[i] != '0')

 {

 return 1;

 }

 i++;

 }

 return 0;

}

int get_raven(char *viperOutput, int maxlength)

{

 int len=0;

 char c;

 /*The following do...while loop continues until a $ is received from the Viper.

 The $ is the start of a message from the Viper. This prevents the controller from

 starting the recording in the wrong place.*/

 do

 {

 /*The function kbhit returns a one if there is a character received and waiting in the

UART buffer. This loop therefore continues until a character is received.*/

 while(!kbhit())

 {

 if(something_to_send) //check if there is anything to send

 {

 putc(activeArray[arraySend++]); //send one character from the activeArray

 if(activeArray[arraySend] == 0) //check for the end of the activeArray

 {

 if(two_part_message) //if the message has two parts, load the second.

 {

 if(open)

 {

 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,1,0\r\n");

 }

 36

 else

 {

 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,0,0\r\n");

 }

 two_part_message = 0;

 arraySend = 0;

 }

 else

 {

 something_to_send = 0;

 }

 }

 delay_us(TIME_TO_DELAY); //wait for the TIME_TO_DELAY to prevent from

overloading

 //the Viper's serial communications and shutting it down.

 }

 }

 c = getc();

 }

 while(c != '$'); //only start recording a string if the start

 //character of $ was received.

 /*The function kbhit returns a one if there is a character received and waiting in the

UART buffer. This loop therefore continues until a character is received.*/

 while(!kbhit())

 {

 if(something_to_send) //check if there is anything to send

 {

 putc(activeArray[arraySend++]); //send one character from the activeArray

 if(activeArray[arraySend] == 0) //check for the end of the activeArray

 {

 if(two_part_message)

 {

 if(open)

 {

 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,1,0\r\n");

 }

 else

 {

 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,0,0\r\n");

 }

 two_part_message = 0;

 arraySend = 0;

 }

 else

 {

 37

 something_to_send = 0;

 }

 }

 delay_us(TIME_TO_DELAY);//wait for the TIME_TO_DELAY to prevent from

overloading

 //the Viper's serial communications and shutting it down.

 }

 }

 c=getc(); //get the first letter after the $

 output_low(PIN_B4); //turn on the yellow LED to show that the recording of a

message has started.

 --maxlength; //subtract one from the length of the string to leave room for the null

character.

 /*This do...while loop records the string until either a new line is received or the string

is full. It also outputs messages when it is not receiving the message. If it recieves an

invalid character or reaches the end of the message, it returns a 0 indicating that the

message was not received properly.*/

 do {

 if ((c<=' ')||(c>='~')||(c=='$'))

 return 0; //return not good if not an alphanumeric or if another $ is reached

 if(!(len<maxlength))

 return 0; //return not good if max length of the string is reached

 viperOutput[len]=c;

 len++;

 /*The function kbhit returns a one if there is a character received and waiting in the

UART buffer. This loop therefore continues until a character is received.*/

 while(!kbhit())

 {

 if(something_to_send) //check if there is anything to send

 {

 putc(activeArray[arraySend++]); //send one character from the activeArray

 if(activeArray[arraySend] == 0) //check for the end of the activeArray

 {

 if(two_part_message)

 {

 if(open)

 {

 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,1,0\r\n");

 }

 else

 {

 strcpy(activeArray, "$R123K,C2,720\r\n$R123K,C3,0743,0,0\r\n");

 38

 }

 two_part_message = 0;

 arraySend = 0;

 }

 else

 {

 something_to_send = 0;

 }

 }

 delay_us(TIME_TO_DELAY);//wait for the TIME_TO_DELAY to prevent from

overloading

 //the Viper's serial communications and shutting it down.

 }

 }

 c=getc();

 } while(c!=13); //stop creating string when a new line is received

 viperOutput[len]=0; //add the null character to indicate the end of the string

return 1; //string was recorded correctly

}

 39

Appendix D. ArcView Manual

I. STARTING ARCVIEW

 Open ArcView program

 The window below will pop up

 Select ‘with new View’

 Click “OK” and ArcView will show this window

 Click “No”

 40

II. ACTIVATE EXTENSIONS

 Click “File” and select “Extensions”

 Check the extensions that you need (MrSID Image Support, Projector!, Spatial

analyst, XTools 9/15/03)

 When you select XTools, this window will pop up

 Click Close

 41

III ADDING THEME TO ARCVIEW

 Click “View” and select “Add Theme”

 This window will pop up, so select the directory of the map

A. Adding Road Maps

 Select the directory and set the data source type to be “Feature Data Source”

 42

 Check on the legend and the map will be shown

B. Adding Aerial Maps

 Select the directory and set the data source type to be “Image Data Source”

 Check on the legend and the map will be shown

 43

C. Adding Watershed Maps

 Select the directory and set the data source type to be “Feature Data Source”

 Check on the legend and the map will be shown

D. Adding Soil Type Maps

 Select the directory and set the data source type to be “Grid Data Source”

 44

 Check on the legend and the map will be shown

For soil type map, we can select the desired classification by:

 Change the legend type to be “Unique Value” as shown in the following window

 45

 Select the desirable value field (the window shows when we want our map

showing the soil texture)

 Check on the legend and the map will be shown

 46

IV. OVERLAP AERIAL MAP AND ROAD MAP

 Add aerial map as described in section III-B

 Add road map as described in section III-A

To merge both maps, we need to change the unit of the aerial map to decimal degrees as

shown on the following steps:

 Click “View” and select “Properties”

 Click on Projection when this window pops up

 47

 Select the category to be “UTM-1983”

 Select the type according to the zone number of the area, for example Payne

County is in zone 14

 48

 Check on the legend and both maps will be shown

 49

V. DRAWING POLYGON

 After completed the instruction in section IV, zoom into the targeted area

 Click on “View” and select “New Theme”

 Select the feature type to be “Polygon” and click “OK”

 50

 Select the desired directory and type the file name

 Click on the drop down arrow located on the bottom right corner of the following

icon. Select the polygon shape (it is the sixth option from the top)

 51

 Click on the edges of the polygon, and then double click on the last point

 The polygon will appear as shown

 52

VI. MAKING PRESCRIPTION MAP

A. Drawing the Boundaries of the Application Area

After drawing polygon of our application area, we can determine the boundaries by

drawing outer polygons following the steps below:

 Click on the drop down arrow of the icon, and select the last option as shown

below

 Draw two different outer polygons as shown in the next four windows

 53

 54

B. Edit Prescription Map Table

 Click “Theme” and select “Table”

 55

 The table will be shown as following

 Click “Edit” and select “Add Field” to add another column for the table

 When this window shows up, change the properties of the column

 56

 The new column will be shown as the following

 Select the polygon of which properties need to be changed

 Click “Field” and select “Calculate”

 Select “=” on the “Requests” list

 57

 Enter the code in the specified space, “1” means it is the application area and the

valve will open and “0” means it is outside the application area and the valve will

close.

 The following windows show the prescribed table

 58

 Click “Theme” and select “Stop Editing” to stop editing the polygons (before stop

editing polygons, don’t highlight any polygon on the maps)

 When the following window pops up, click “Yes”

 59

VII. PROJECTING UNITS OF POLYGON

After we draw a polygon on aerial map, we need to project the units to decimal degrees

so that we can put it on the road map using the following steps:

 Click on “View” and select “Properties”

 Change the map units to meters and click “OK”

 Click on the “change projection” icon (first icon from the right)

 60

 Then this window will pop up, click “OK”

 The following window will pop up

 Change the category to “UTM-1983”

 61

 Change the type according to the zone of the area (for example, Payne County is

in zone 14)

 Select output units to “decimal degrees” and click “OK”

 Then, this window will pop up. Select “Yes” if you want to recalculate area,

perimeter, and length using the new units. Otherwise, select “No”

 Click “Yes” to add projected polygon as a theme

 62

 Select the View to show the new polygon

 Select the desired saving directory and rename the polygon file

 After completing above steps, the polygon can be overlapped on the road map

 63

Appendix D. Download Instructions

MAPS WEBSITE ADDRESS

1. Aerial Photo Maps http:// 139.78.101.190/2003img1/

2. Watershed Profile http://www.epa.gov/waterscience/basins/b3webdwn.htm

3. Road Maps http://arcdata.esri.com/data/tiger2000/tiger_download.cfm

4. Township Maps

 http://www.ok.nrcs.usda.gov/technical/GIS/County%20Base%20Maps/plss_page.html

 5. Soil type Maps On CD

DOWNLOADING MAPS FROM WEBSITE

A. Aerial Photo Maps

1. Browse the aerial photo map website

2. Click on the county, which you want to download

3. Select save

4. Open those files to unzip them

5. Click Extract

6. Then click ok to finish unzip them

B. Watershed Profile

1. Open the watershed profile website

2. Click on “Surf Your Watershed”, under the heading of “Data from the web”

3. On the “Surf Your Watershed” page, click on “Locate Your Watershed” picture

4. Use “Find Place” to search watersheds of the desired county

5. You can see the list of watersheds under “Watersheds by County”

6. Open another window for the watershed profile website and click on

http://www.epa.gov/waterscience/ftp/basins/gis_data/huc

7. Click on the desired watershed number

8. Open the core.exe file

9. Select save

10. Unzip the file

C. Road Maps

1. Open the road map website

2. Select the desired state

3. Select the county and click “Submit Selection”

4. Check on “Line Features-Roads” and click “Proceed to Download”

5. Click “Download File”

6. Select save

7. Unzip the file

D. Township Maps

1. Open the township map website

http://www.epa.gov/waterscience/basins/b3webdwn.htm
http://arcdata.esri.com/data/tiger2000/tiger_download.cfm
http://www.epa.gov/waterscience/ftp/basins/gis_data/huc

 64

2. Click on the desired county

3. Save the file

GPSGPS--Controlled HazardousControlled Hazardous--
Material ValveMaterial Valve

Oklahoma State University

BAE 4012 & 4001

Dr. Weckler & Dr. Brown

Sponsor: Joe Hamilton,

UniBridge Scale Systems

Our ProblemOur Problem

�� Design a system that prevents liquid waste Design a system that prevents liquid waste
disposal in unauthorized sites and to prove disposal in unauthorized sites and to prove
the waste was disposed in desired sites.the waste was disposed in desired sites.

Current PracticesCurrent Practices

��PermitterPermitter looks for eligible disposal looks for eligible disposal
areas near well site.areas near well site.

��Contacts land owners for permission.Contacts land owners for permission.

��Requests permit from the Oklahoma Requests permit from the Oklahoma
Corporation Commission.Corporation Commission.

��Send truck driver from well site to Send truck driver from well site to
disposal site.disposal site.

Current ProblemsCurrent Problems

��Driver has little training.Driver has little training.

��Drilling fluids may be placed in the Drilling fluids may be placed in the
wrong area.wrong area.
�� Accidentally by misreading the mapAccidentally by misreading the map

�� Intentionally by driver to get done fasterIntentionally by driver to get done faster

��Companies may be sued when it was Companies may be sued when it was
actually a competitor was at fault.actually a competitor was at fault.

Proposed SystemProposed System

��Use a GIS package to simplify Use a GIS package to simplify
process in the home office.process in the home office.

��GIS package contains information onGIS package contains information on
�� Soil types,Soil types,

�� Topographical Information, andTopographical Information, and

�� Permitted conditions to plan the disposal Permitted conditions to plan the disposal
area.area.

Proposed System Cont.Proposed System Cont.

Truck is Ready

Supervisor Calls the Home Office

Home Office Sends:
-Directions

-Disposal Area

Proposed System Cont.Proposed System Cont.

Truck Driver Logs In

Driver Proceeds to the
Disposal Area

Driver Turns on Valve
Log Records

Position
Every 5 Secs

Data Log
Starts

Proposed System Cont.Proposed System Cont.

Controller Ensures Truck
is Moving and in Area

Driver Pushes Job
Done Button

Driver Closes Valve

Lock Valve Closed
& Send Log Data

Back to Home Office

Our piece of the problemOur piece of the problem

��We are working on the system that is We are working on the system that is
onon--board the truck.board the truck.

��This is the controller that allows the This is the controller that allows the
steps detailed in the diagram.steps detailed in the diagram.

��Must work with standards from the Must work with standards from the
other parts of the system.other parts of the system.

Requirements for ControllerRequirements for Controller

��Receives area data and well site data Receives area data and well site data
in an electronic form in an electronic form

��Tests to determine whether valve is Tests to determine whether valve is
allowed to be openedallowed to be opened

�� Informs driver of the state of the Informs driver of the state of the
systemsystem

��Creates a log to record all necessary Creates a log to record all necessary
datadata

Requirements for the Data LogRequirements for the Data Log

��Truck IDTruck ID

��Well site locationWell site location

��Time informationTime information

��Records position Records position
and time when and time when
valve is openvalve is open

��Driver IDDriver ID

��Valid disposal Valid disposal
locationlocation

��Records valve Records valve
closingclosing

Controller Design IdeasController Design Ideas

��Four ideas for designsFour ideas for designs
�� Simple custom systemSimple custom system

�� Advanced custom systemAdvanced custom system

�� Based on a MidBased on a Mid--Tech controllerTech controller

�� Based on a Trimble controllerBased on a Trimble controller

Simple Custom SystemSimple Custom System

�� Interface consists of 5 lights and 3 Interface consists of 5 lights and 3
buttonsbuttons

��No driving directionsNo driving directions

��No way to enter disposal amountNo way to enter disposal amount

��Lights indicate system statusLights indicate system status

��Buttons control systemButtons control system

��$25,000 in development costs$25,000 in development costs

Strengths & WeaknessesStrengths & Weaknesses

�� SimpleSimple——Easy to useEasy to use

�� Test to ensure the Test to ensure the
vehicle is moving and vehicle is moving and
in designated areain designated area

�� Can be integrated Can be integrated
with wireless data with wireless data
transfer systemstransfer systems

�� No need to read No need to read
English to operateEnglish to operate

�� No map or directionsNo map or directions

�� No ability for the No ability for the
driver to overdriver to over--ride ride
with passwordswith passwords

�� No ability to record No ability to record
disposal amount disposal amount
locallylocally

Strengths Weaknesses

Advanced Custom SystemAdvanced Custom System

�� Interface consists of text display Interface consists of text display
screen, 5 lights, and 6 buttonsscreen, 5 lights, and 6 buttons

��Receives driving direction from Receives driving direction from
wireless network & displays directions wireless network & displays directions
on the text screenon the text screen

��Lights indicate system statusLights indicate system status
��Buttons control systemButtons control system
��$50,000 in development costs$50,000 in development costs

Strengths & WeaknessesStrengths & Weaknesses

�� SimpleSimple——Easy to useEasy to use

�� Test to ensure the Test to ensure the
vehicle is moving and vehicle is moving and
in designated areain designated area

�� Can be integrated Can be integrated
with wireless data with wireless data
transfer systemstransfer systems

�� Gives driving Gives driving
directionsdirections

�� No mapNo map

�� Must be able to read Must be able to read
English to understand English to understand
the directionsthe directions

Strengths Weaknesses

MidMid--Tech SystemTech System

�� Based on the Legacy 6000Based on the Legacy 6000

�� System is currently in use in System is currently in use in
Precision Farming Precision Farming
applicationsapplications

�� Uses the Legacy 6000 Uses the Legacy 6000
systems with a liquid systems with a liquid
application controller to turn application controller to turn
on and off the valveon and off the valve

�� Entire System costs Entire System costs ≈≈$11,000$11,000

Strengths & WeaknessesStrengths & Weaknesses

�� Display maps on color Display maps on color
screenscreen

�� Can receive shape Can receive shape
files directlyfiles directly

�� Will print out log data Will print out log data
in a job report formatin a job report format

�� Driver can just turn off Driver can just turn off
the designated area the designated area
controlcontrol

�� Must use flash card Must use flash card
for communicationfor communication

�� ComplicatedComplicated

�� Must be able to read Must be able to read
English and have English and have
basic computer skillsbasic computer skills

Strengths Weaknesses

Trimble SystemTrimble System

�� Based on the Based on the AgGPSAgGPS 170 170
Field ComputerField Computer

�� System is currently in use in System is currently in use in
Precision Farming Precision Farming
applicationsapplications

�� Uses the Uses the AgGPSAgGPS 170 with a 170 with a
liquid application controller to liquid application controller to
turn on and off the valveturn on and off the valve

�� Entire System costs Entire System costs ≈≈$9,000$9,000

Strengths & WeaknessesStrengths & Weaknesses

�� Display maps on color Display maps on color
screenscreen

�� Can receive shape Can receive shape
files directlyfiles directly

�� Guidance system to Guidance system to
help find the help find the
designated sitedesignated site

�� Can create more Can create more
simple menus simple menus

�� Driver can just turn off Driver can just turn off
the designated area the designated area
controlcontrol

�� Must use flash card Must use flash card
for communicationfor communication

�� Still more complicated Still more complicated
than basic systemsthan basic systems

�� Must be able to read Must be able to read
English and have English and have
basic computer skillsbasic computer skills

Strengths Weaknesses

ConclusionConclusion

��Based on Trimble Based on Trimble AgGPSAgGPS 170 Field 170 Field
ComputerComputer

��Company to create custom controllers Company to create custom controllers
is busyis busy

��Time constraintsTime constraints

��Budget constraintsBudget constraints

Expected BudgetExpected Budget

≈$9,000.00Total

≈$1,000.00Miscellaneous

≈$1,000.00Fluid Controller

$6,750.00Trimble Unit

Anticipated ResultsAnticipated Results

��Confirm that is it possible to integrate Confirm that is it possible to integrate
all of the components necessary for all of the components necessary for
this system.this system.

��Solve implementation problems faced Solve implementation problems faced
by our design.by our design.

��Detail any problems that may arise as Detail any problems that may arise as
work continues to bring the product to work continues to bring the product to
market.market.

Projected ScheduleProjected Schedule

Thank YouThank You

�� Joe Hamilton and Joe Hamilton and
UniBridgeUniBridge Scale SystemsScale Systems

�� Dr. StoneDr. Stone

�� Dr. BrownDr. Brown

�� Dr. Dr. SolieSolie

�� Dr. Dr. WecklerWeckler

�� BAE department staffBAE department staff

	SD-2004-2005-B3E-Spring-Report.pdf
	SD-2004-2005-B3E-Spring-Presentation.pdf
	SD-2004-2005-B3E-Fall-Report.pdf
	SD-2004-2005-B3E-Fall-Presentation.pdf

